
How Your Brass Rat
Could Care For You!

chip: “ATA5577 compatible” with 330pF cap, $50/100 on Digikey
modulation: f=125KHz, “PSK1” at f/2, data rate f/32, total 224 bits

Coil retail varies (AliBaba, ebay), ~$150/200 at SmartPrototyping
“5” ring coil: ∅ 1.2mm, ∅ 8mm, .9mm, 1.5mH – tiny range, flaky

“8” ring coil: ∅ 9.6mm, 1.5mH – small range, ok

HEREHERE
FISTBUMPFISTBUMP

Wouldn’t it be cool if your
brass rat was actually
useful for something, in
addition to methaphorically
opening doors? Proposal:

Reading RFID with
oscilloscope and eyes
Setup: 125Khz - L - Vout - C - gnd

1. Pick either the top or bottom
envelope of the signal (try both).
2. Classify each peak as “high” or
“low”, find alternating pattern.
3. A pair of non-alternating bits
indicates phase reversal of the
half-frequency modulation.
4. Manually note down 224 bits…

Reading RFID in code
Setup: Vout --> 2MSPS ADC

1. Find the 125KHz peaks on the
preferred side of the signal.
2. Plot (odd – even) for each pair
of successive peaks, as shown on
the plot on the right.
These correspond to data bits:

● negative→ “0”
● roughly 0 → transitioning
● positive → “1”

3. The “beginning” of the signal
has 32*30 cycles of bit “0”,
followed by 32 cycles of “1”.
4. Start sampling 16 into the “1”.

Source materials
(mechanical, electrical, software)

for everything described in this booklet
are available at

https://github.com/arphid/arphid

Building a 125KHz Reader+Writer For $15

4.7nF

(

STM32F303K8 or similar microcontroller w 2MHz ADC |Nucleo-32 dev board |$11
opamp for 5V 125khz rail-to-rail squarewave output |OPA350PA (overkill) |$ 3
a button for switching between read and write mode |EG4791 (too bulky) |$ 1
capacitor and coil for 125KHz resonance |350uH x 4.7nF
resistors: 1K, 4K7, 10K, 10K, 10K, 10K; additional dc-blocking cap: 4.7nF

Electrical components:

15x8 perfboard layout (under nucleo32):

D

Reader+writer using $15 of standard
components on a perfboard or (with less
read range) a breadboard. Estimated
<1h for build, progam, test. Perfboard:
do not cut component leads early,
instead bend them to make connections.
nucleo32 w/o computer: remove SB9
and solder 2 DC regulator pins as below:

Not Hard Enough Yet? ATTiny85 as a tag!

It is actually possible to make an
RFID tag without any RFID parts!

This is not black magic, but rather an inherent
property of how RFID works. A good model of the
RFID chip’s effect on the coil is that on every
clock cycle the chip can change its impedance.
Thinking of the coils in the chip-coil-air-coil-reader
system as transformer, it is obvious that changes
in tag chip impedance reach the reader.

To do this, we need microcontroller that can
change it’s GPIO direction (whether a pin acts as
an input or an output) every clock cycle. The
overall system will consist of only three
components: coil, resonant capacitor for 125KHz,
and the microcontroller – all connected in parallel.
On the microcontroller, the LC tank will act as:

● An external clock – connect between CLK pins
● Output – using GPIO direction registers
● Power and ground – through built-in pin

protection diodes diodes as depicted below

ATTiny85 pin protection diodes

 out 0x17, %1 // 1 cycle
 out 0x17, %2 // 1 cycle
 out 0x17, %1 // 1 cycle
 out 0x17, %2 // 1 cycle
phaseEvenSel:
 ld r30, Y+ // 2 cycles
 ijmp // to phaseEven/Odd, 2 cycles
.balign 0x80,,
phaseOdd:
 out 0x17, %2 // 1 cycle
 out 0x17, %1 // 1 cycle
 out 0x17, %2 // 1 cycle

Excerpt from cycle-accurate code

The tag code is written in assembly and carefully
designed for cycle-accurate timing. Most clock
cycles are spent setting coil impedance to send
the right bit to the reader, but 4 of every 32 cycles
are needed to run control logic. This is acceptable
because readers have error correction. However,
a frame error of even 1/(224*32) breaks reading.

The code has two main sections, "output odd
phase" and "output even phase". Each of these
sections consists of 28 single-cycle output
commands, a 2-cycle load-post-increment
command, and a 2-cycle jump to the loaded
address. The load reads the next bit of card data
(encoded as an address in the assembly code)
and the jump resets to the beginning of "output
odd/even phase". At the end of 224 bits special
control code is run to reset the bit counter in
addition to reloading the first bit.

Unrelatedly, EEPROM does work on coil power.

Это самиздат.
€0, $0 USD,£0, 0 RSD, 0 SEK, $50 CAD.
Don’t link, mirror! Don’t steal, copy!

ATtiny85, capacitor, and a hand-wound coil

Complete circuit diagram of RFID emulator

